animateMainmenucolor
activeMenucolor
Электродвигатели в наличии
Главная / Техническая информация / Принцип действия асинхронного двигателя

Принцип действия асинхронного двигателя

Электрические машины - это машины, совершающие преобразование электрической энергии в механическую или механической в электрическую. В первом случае электрические машины называются двигателями, во втором — генераторами.

Асинхронный электродвигатель относятся к классу индуктивных электрических машин, действие которых основано на явлении электромагнитной индукции, открытом Фарадеем в 1831 г.

Чтобы лучше понять принцип действия асинхронного двигателя, на котором основана его работа , рассмотрим известный опыт Араго (рис. 1), объясненный впоследствии Фарадеем. В этом опыте некоторый постоянный магнит М люсами N—5 приводится во вращение механически мощью рукоятки Р. На небольшом расстоянии от полюсов магнита устанавливается легкий медный диск Д на оси, которая может вращаться в подшипниках. При вращении рукоятки и соответственно закрепленного с нею магнита в медном диске наводятся токи, которые, взаимодействуя с магнитным полем N — S, обеспечивают появление вращающего момента. Под влиянием этого момента диск также увлекается в сторону вращения магнита. Таким образом, диск Араго является прототипом современного асинхронного двигателя.

Рис. 1. Опыт Ф. Д. Араго

Если в магнитном поле поместить прямолинейный проводник длиной l перпендикулярно направлению поля и пропустить через него постоянный электрический ток I, то на проводник в соответствии с законом Ампера будет действовать механическая сила F. Эта сила равна (в ньютонах) :

F = BlI,    (1)

где В — индукция магнитного поля, Тл; l — длина той части проводника, которая находится в магнитном поле, м; I — сила тока, проходящего по проводнику, А.

Таким образом, электрическая машина должна содержать две основные части: часть, создающую магнитное поле, и часть, содержащую совокупность проводников, расположенных в этом поле. В электрических машинах магнитное поле обычно создается с помощью системы обмоток (катушек) с током, расположенных на стальных (ферромагнитных) сердечниках.

Рассмотрим теперь простейший случай образование магнитного поля с помощью переменного тока, проходящего по витку катушки, имеющему форму, показанную на рис. 2,а. Промышленная сеть переменного тока обеспечивает синусоидальную форму тока. На рис. 2,е изображена характеристика изменения тока в рассматриваемом контуре в зависимости от времени протекания процесса. Как видно из графика, ток имеет один знак, условно принятый положительным, на участке от 0 до момента времени t1, а затем противоположный, отрицательный знак на участке от t1 до t2 по оси времени.

Максимальные значения тока Imax достигаются в моменты времени t' и t"'. При прохождении тока по рассматриваемому проводнику образуется магнитное поле, направление силовых линий которого показано на рис. 2,б в плоскости, перпендикулярной контуру с током. Условно направление тока от плоскости чертежа к читателю обозначено точкой, а противоположное направление — крестиком. Пунктиром показан постоянный магнит, обеспечивающий аналогичное магнитное поле, как и контур с током в момент времени t'. Для любого другого момента времени на участке 0—t1 магнитное поле будет иметь то же направление, но по значению оно будет слабее (например, в момент времени t"). Далее на участке характеристики t1 — t2 (рис. 2,в) направление магнитных силовых линий поля (рис. 2, б) меняется на противоположное в соответствии  с изменением знака, т. е. направление тока в контуре (противоположное по сравнению с изображенным на рис. 2,б) также изменится на противоположное.

Рис. 2. Образование пульсирующего магнитного поля контуром с током: а — контур с током; б — магнитное поле контура; в — изменение тока в контуре во времени

Таким образом, при питании контура переменным током направление и величина магнитного поля, образованного этим витком, периодически изменяются. Такое магнитное  поле получило название пульсирующего.

Мы рассмотрели случай образования магнитного поля при питании контура однофазным переменным током. На практике асинхронные двигатели, как правило, питаются трехфазным переменным током. Трехфазная цепь переменного тока состоит из трех однофазных цепей. В этих цепях токи или напряжения изменяются по тому же периодическому синусоидальному закону с той же частотой, но с некоторым сдвигом (отставанием) во времени. Величина отставания тока во второй фазе по сравнению с током в первой фазе составляет 1/3 периода времени Т, или 120°. Ток в третьей фазе также отстает от тока во второй фазе на 1/3 периода.

На рис. 3,б показано образование магнитного поля с помощью трех контуров, сдвинутых относительно друг друга на 120° и питающихся от трехфазной сети синусоидального переменного тока. На рис. 3,а показан характер прохождения токов в каждой фазе, т. е. в каждом из контуров. Обозначение направлений токов на рис. 3,б (точки или крестики) соответствует принятому нами на рис. 2. Токи считаются положительными, если они имеют направления из плоскости чертежа (обозначено точкой) в началах контуров с током в фазах Ан, Вн, Сн и одновременно направление в плоскость чертежа (обозначено крестиком) в концах контуров фаз Ак, Вк, Ск. Такой случай, рассматриваемый для момента времени t1, показан на примере рис. 3,б. Пользуясь известным из физики правилом буравчика, можно построить силовые линии создаваемого магнитного поля токов. Направление этих силовых линий будет аналогично направлению силовых линий поля, создаваемого с помощью постоянного магнита, условно обозначенного на этом рисунке пунктиром.

Рис. 3. Образование вращающегося магнитного поля трехфазным током: а — изменение фазных токов во времени; б — магнитное поле в разные моменты времени

В некоторый момент времени t1 ток tВ достигнет своего наибольшего положительного значения, при этом токи iА, iС отрицательны. Такой пример рассмотрен на втором сверху рисунке (рис. 3,б). Как видно, в рассматриваемом случае две образовавшиеся зоны токов противоположного направления создают аналогичное поле, как и в момент времени t1. Однако оно повернуто на 1/3 окружности, т. е. на 120° по часовой стрелке.

Далее сравним распределение магнитного поля на двух других примерах рис. 3,б, соответствующих моментам времени t3 и t4, с рассмотренными ранее случаями для моментов времени t1 и t2. При сравнении видно, что за период изменения времени Т создаваемое трехфазным током магнитное поле поворачивается в пространстве на целый оборот, т. е. на 360°. Такое магнитное поле называется вращающимся.

Если изменить чередование каких-либо двух фаз (рис.4), например подключить обмотку b к фазе С и наоборот, т. е. вместо соединения по схеме на рис. 4,а выполнить его по схеме на рис. 4,б, то произойдет изменение направления вращения магнитного поля на противоположное. Это свойство обычно используетсяпри необходимости изменения направления вращения асинхронного электродвигателя, т. е. при осуществлении так называемого реверса двигателя.

Рис. 4. Изменение чередования фаз питающего напряжения для изменения направления вращения асинхронного двигателя

Как видно из простейшего примера (см. рис. 1), аналогичное магнитное поле может быть получено с помощью-электромагнита, имеющего одну пару полюсов (северный N и южный S). В дальнейшем понятием число пар полюсов мы будем часто пользоваться.

Асинхронный электродвигатель имеются две основные части — вращающийся ротор и неподвижный статор. В широко распространенных трехфазных асинхронных электродвигателях статор подключается к трехфазной сети переменного тока. Трехфазный ток обмоток статора создает вращающееся магнитное поле с магнитным потоком Ф. Поле вращается относительно ротора, пересекает его обмотки и наводит в них электродвижущие силы (ЭДС). Под действием ЭДС в обмотках ротора, замкнутых накоротко, проходит ток I2 (в дальнейшем индекс 1 будет соответствовать статору и индекс 2 — ротору).

При взаимодействии тока ротора с вращающимся магнитным полем статора возникает сила, которая заставляет ротор двигаться в сторону вращения магнитного поля. Этой силе соответствует вращающий электромагнитный момент М, который пропорционален магнитному потоку Ф поля статора и току ротора I2, т. е.

М=kмФI2,      (2)

где kм — коэффициент, учитывающий конструктивные размеры активных частей машины.

Необходимо отметить, что вращающееся поле может быть  двухполюсным,  четырехполюсным, шестиполюсным и т. д. Число пар полюсов вращающегося поля определяется устройством обмотки статора. При одной и той же частоте f1 питающего тока (промышленная частота 50 периодов в секунду, или 50 Гц) многополюсное магнитное поле будет вращаться медленнее двухполюсного в число раз, равное числу пар полюсов р обмотки машины. Частота вращения поля n1 может быть найдена по формуле, об/мин,

n1=60f1/p.      (3)

В асинхронном двигателе частота вращения ротора n, увлекаемого магнитным полем статора, меньше частоты вращения n1 самого поля. В самом деле, в случае равенства этих частот вращения прекратилось бы движение поля по отношению к ротору, в роторе перестала бы наводиться ЭДС, создающая токи в его обмотках. При этом прекратилось бы создание электромагнитного момента, под действием которого ротор приходил во вращения. В таком случае ротор стал бы неминуемо проскальзывать, тормозиться, т. е. частота его вращения стала бы меньше частоты вращения магнитного поля, что и соответствует действительному положению в асинхронном двигателе. Ввиду различия частот вращения поля и ротора рассматриваемые машины получили названия асинхронных или несинхронных.

Относительная разность частот вращения ротора и магнитного поля получила название скольжения. Скольжение обозначается буквой s и определяется по формуле

         (4)

Если затормозить ротор асинхронного двигателя (n=0), то частоты токов статора и ротора будут одинаковыми, а сам двигатель превратится в трансформатор с вращающимся магнитным полем. В этом режиме преобразования электрической энергии в механическую не происходит.

В зависимости от соотношения частот вращения поля n1 и ротора n можно выделить три режима работы асинхронной машины: двигательный, генераторный и тормозной. Рассмотрим их подробней.

Когда асинхронный двигатель работает в двигательном режиме частота вращения ротора изменяется в пределах 0<n<n1. Вращение ротора происходит под действием электромагнитного вращающего момента, а его направление совпадает с направлением вращения поля статора. Этот режим является основным при работе машины. Подводимая к статору электрическая энергия преобразуется в данном режиме в механическую.

Если с помощью какого-либо другого первичного двигателя, установленного на валу асинхронной машины, обеспечить вращение ротора с частотой выше частоты вращения магнитного поля статора (n>n1), то асинхронная машина перейдет в генераторный режим, при этом направление вращения поля статора относительно ротора изменится на обратное по сравнению с работой машины в двигательном режиме. Вследствие этого изменят свой знак ЭДС, наводимая в обмотке ротора, и ток I2. Изменение направления тока приведет к изменению направления электромагнитного момента, который теперь будет направлен против направления вращения ротора. Таким образом, электромагнитный момент становится тормозным по отношению к двигателю, который приводит во вращение ротор асинхронной машины. Механическая энергия, передаваемая этим- двигателем асинхронной машине, преобразуется в электрическую и отдается в сеть, к которой подключена асинхронная машина. Примером такого режима может служить работа электровоза при спуске железнодорожного состава под уклон.

Режим работы асинхронной машины, когда ротор приводится во вращение против направления вращения электромагнитного поля статора, получил название режима электромагнитного тормоза (или тормозного). Этот режим нашел применение в ряде подъемно-транспортных устройств. В этом режиме, как и в генераторном, электромагнитный момент направлен против направления вращения ротора. Однако в отличие от генераторного режима в режиме электромагнитного тормоза не происходит электромеханического преобразования энергии. Вся подводимая к асинхронной машине механическая и электрическая энергия преобразуется в потери (нагрев обмоток, потери на трение и др.). Генераторный режим и режим электромагнитного тормоза относятся к специальным режимам работы асинхронных машин.